Analysis Beispiele

미분 구하기 - d/dx f(x)=(cos(8x)-1)/(sin(9x))
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2
Die Ableitung von nach ist .
Schritt 3.3
Ersetze alle durch .
Schritt 4
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.6
Addiere und .
Schritt 5
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 5.2
Die Ableitung von nach ist .
Schritt 5.3
Ersetze alle durch .
Schritt 6
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.4
Mutltipliziere mit .
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Wende das Distributivgesetz an.
Schritt 7.2
Wende das Distributivgesetz an.
Schritt 7.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 7.3.2
Mutltipliziere mit .
Schritt 7.4
Stelle die Terme um.