Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.3
Multipliziere die linke Seite aus.
Schritt 3.3.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 3.3.2
Der natürliche Logarithmus von ist .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 3.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2
Vereinfache die linke Seite.
Schritt 3.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.1.2
Dividiere durch .
Schritt 3.4.3
Vereinfache die rechte Seite.
Schritt 3.4.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 5.2.4
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.4.1
Faktorisiere aus heraus.
Schritt 5.2.4.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.4.2.1
Faktorisiere aus heraus.
Schritt 5.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.2.3
Forme den Ausdruck um.
Schritt 5.2.4.2.4
Dividiere durch .
Schritt 5.2.5
Der natürliche Logarithmus von ist .
Schritt 5.2.6
Mutltipliziere mit .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Kürze den gemeinsamen Faktor von .
Schritt 5.3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.3.3.2
Faktorisiere aus heraus.
Schritt 5.3.3.3
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.4
Forme den Ausdruck um.
Schritt 5.3.4
Multipliziere.
Schritt 5.3.4.1
Mutltipliziere mit .
Schritt 5.3.4.2
Mutltipliziere mit .
Schritt 5.3.5
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .