Analysis Beispiele

Ermittle die Umkehrfunktion f(x)=(6x-1)/(2x+5)
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.2.2
Entferne die Klammern.
Schritt 3.2.3
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Multipliziere jeden Term in mit .
Schritt 3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2
Forme den Ausdruck um.
Schritt 3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1
Wende das Distributivgesetz an.
Schritt 3.3.3.2
Stelle um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3.3.2.2
Bringe auf die linke Seite von .
Schritt 3.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Faktorisiere aus heraus.
Schritt 3.4.3.2
Faktorisiere aus heraus.
Schritt 3.4.3.3
Faktorisiere aus heraus.
Schritt 3.4.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.4.2.1.2
Forme den Ausdruck um.
Schritt 3.4.4.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.4.2.2.2
Dividiere durch .
Schritt 4
Replace with to show the final answer.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.3.2
Kombiniere und .
Schritt 5.2.3.3
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.2.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Wende das Distributivgesetz an.
Schritt 5.2.4.2
Mutltipliziere mit .
Schritt 5.2.4.3
Mutltipliziere mit .
Schritt 5.2.4.4
Addiere und .
Schritt 5.2.4.5
Addiere und .
Schritt 5.2.4.6
Addiere und .
Schritt 5.2.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.2.6
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.6.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.6.1.1
Faktorisiere aus heraus.
Schritt 5.2.6.1.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.6.1.3
Forme den Ausdruck um.
Schritt 5.2.6.2
Mutltipliziere mit .
Schritt 5.2.7
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.7.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.7.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.7.3
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.7.3.1
Wende das Distributivgesetz an.
Schritt 5.2.7.3.2
Mutltipliziere mit .
Schritt 5.2.7.3.3
Mutltipliziere mit .
Schritt 5.2.7.3.4
Wende das Distributivgesetz an.
Schritt 5.2.7.3.5
Mutltipliziere mit .
Schritt 5.2.7.3.6
Mutltipliziere mit .
Schritt 5.2.7.3.7
Subtrahiere von .
Schritt 5.2.7.3.8
Addiere und .
Schritt 5.2.7.3.9
Addiere und .
Schritt 5.2.8
Faktorisiere aus heraus.
Schritt 5.2.9
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.9.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.9.2
Forme den Ausdruck um.
Schritt 5.2.10
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.10.1
Faktorisiere aus heraus.
Schritt 5.2.10.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.10.3
Forme den Ausdruck um.
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Wende das Distributivgesetz an.
Schritt 5.3.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.2.1
Faktorisiere aus heraus.
Schritt 5.3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.2.3
Forme den Ausdruck um.
Schritt 5.3.3.3
Kombiniere und .
Schritt 5.3.3.4
Mutltipliziere mit .
Schritt 5.3.3.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.5.1
Faktorisiere aus heraus.
Schritt 5.3.3.5.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.5.3
Forme den Ausdruck um.
Schritt 5.3.3.6
Kombiniere und .
Schritt 5.3.3.7
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.3.8
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.8.1
Faktorisiere aus heraus.
Schritt 5.3.3.8.2
Faktorisiere aus heraus.
Schritt 5.3.3.8.3
Faktorisiere aus heraus.
Schritt 5.3.3.9
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.3.3.10
Kombiniere und .
Schritt 5.3.3.11
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.3.12
Stelle die Terme um.
Schritt 5.3.3.13
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.13.1
Wende das Distributivgesetz an.
Schritt 5.3.3.13.2
Mutltipliziere mit .
Schritt 5.3.3.13.3
Mutltipliziere mit .
Schritt 5.3.3.13.4
Wende das Distributivgesetz an.
Schritt 5.3.3.13.5
Mutltipliziere mit .
Schritt 5.3.3.13.6
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.13.6.1
Mutltipliziere mit .
Schritt 5.3.3.13.6.2
Mutltipliziere mit .
Schritt 5.3.3.13.7
Addiere und .
Schritt 5.3.3.13.8
Subtrahiere von .
Schritt 5.3.3.13.9
Addiere und .
Schritt 5.3.4
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Wende das Distributivgesetz an.
Schritt 5.3.4.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.2.2
Forme den Ausdruck um.
Schritt 5.3.4.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.3.2
Forme den Ausdruck um.
Schritt 5.3.4.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.4.5
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.3.4.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.4.7
Stelle die Terme um.
Schritt 5.3.4.8
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.8.1
Wende das Distributivgesetz an.
Schritt 5.3.4.8.2
Mutltipliziere mit .
Schritt 5.3.4.8.3
Mutltipliziere mit .
Schritt 5.3.4.8.4
Subtrahiere von .
Schritt 5.3.4.8.5
Addiere und .
Schritt 5.3.4.8.6
Addiere und .
Schritt 5.3.5
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.3.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.6.1
Faktorisiere aus heraus.
Schritt 5.3.6.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.6.3
Forme den Ausdruck um.
Schritt 5.3.7
Mutltipliziere mit .
Schritt 5.3.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.8.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.8.2
Dividiere durch .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .