Analysis Beispiele

Bestimme den Definitionsbereich g(x)=2/(1-cos(x))
Schritt 1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.2.2.2
Dividiere durch .
Schritt 2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Dividiere durch .
Schritt 2.3
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 2.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Der genau Wert von ist .
Schritt 2.5
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 2.6
Subtrahiere von .
Schritt 2.7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 2.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.7.4
Dividiere durch .
Schritt 2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 2.9
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Aufzählende bzw. beschreibende Mengenschreibweise:
, für jede Ganzzahl
Schritt 4