Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.7
Mutltipliziere mit .
Schritt 2.8
Kombiniere und .
Schritt 2.9
Kombiniere und .
Schritt 2.10
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Vereine die Terme
Schritt 3.2.1
Kombiniere und .
Schritt 3.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 3.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 3.2.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.2.3
Forme den Ausdruck um.
Schritt 3.2.3
Addiere und .