Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Wandle die Ungleichung in eine Gleichung um.
Schritt 2
Schritt 2.1
Schreibe als um.
Schritt 2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.3
Schreibe das Polynom neu.
Schritt 2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 3
Setze gleich .
Schritt 4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 6
Schritt 6.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 6.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 6.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 6.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 6.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 6.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 6.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 6.2.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 6.3
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Wahr
Wahr
Wahr
Schritt 7
Die Lösung besteht aus allen wahren Intervallen.
oder
Schritt 8
Notiere die Ungleichung in Intervallschreibweise.
Schritt 9