Analysis Beispiele

dy/dx 구하기 1/(x^2)+1/(y^2)=1
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Schreibe als um.
Schritt 2.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.2.3
Ersetze alle durch .
Schritt 2.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.4.2
Mutltipliziere mit .
Schritt 2.2.5
Mutltipliziere mit .
Schritt 2.2.6
Potenziere mit .
Schritt 2.2.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.8
Subtrahiere von .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.3.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.3
Ersetze alle durch .
Schritt 2.3.4
Schreibe als um.
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.3.6
Mutltipliziere mit .
Schritt 2.3.7
Mutltipliziere mit .
Schritt 2.3.8
Subtrahiere von .
Schritt 2.3.9
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.9.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.9.2
Mutltipliziere mit .
Schritt 2.3.10
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.10.1
Faktorisiere aus heraus.
Schritt 2.3.10.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.10.2.1
Faktorisiere aus heraus.
Schritt 2.3.10.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.10.2.3
Forme den Ausdruck um.
Schritt 2.3.11
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Kombiniere und .
Schritt 2.4.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.2.2.2
Dividiere durch .
Schritt 5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Bringe die negative Eins aus dem Nenner von .
Schritt 5.2.3.2
Schreibe als um.
Schritt 5.3
Multipliziere beide Seiten mit .
Schritt 5.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.1.1.2
Forme den Ausdruck um.
Schritt 5.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.1
Kombiniere und .
Schritt 5.4.2.1.2
Bringe auf die linke Seite von .
Schritt 5.5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Teile jeden Ausdruck in durch .
Schritt 5.5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.2.1.2
Dividiere durch .
Schritt 5.5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.5.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.5.3.2.2
Faktorisiere aus heraus.
Schritt 5.5.3.2.3
Kürze den gemeinsamen Faktor.
Schritt 5.5.3.2.4
Forme den Ausdruck um.
Schritt 5.5.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Ersetze durch .