Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3
Schritt 3.1
Wende den binomischen Lehrsatz an.
Schritt 3.2
Differenziere.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Wende die Produktregel auf an.
Schritt 3.2.1.2
Potenziere mit .
Schritt 3.2.1.3
Wende die Produktregel auf an.
Schritt 3.2.1.4
Potenziere mit .
Schritt 3.2.1.5
Mutltipliziere mit .
Schritt 3.2.1.6
Mutltipliziere mit .
Schritt 3.2.1.7
Wende die Produktregel auf an.
Schritt 3.2.1.8
Potenziere mit .
Schritt 3.2.1.9
Mutltipliziere mit .
Schritt 3.2.1.10
Potenziere mit .
Schritt 3.2.1.11
Mutltipliziere mit .
Schritt 3.2.1.12
Mutltipliziere mit .
Schritt 3.2.1.13
Potenziere mit .
Schritt 3.2.1.14
Mutltipliziere mit .
Schritt 3.2.1.15
Potenziere mit .
Schritt 3.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Ersetze alle durch .
Schritt 3.4
Mutltipliziere mit .
Schritt 3.5
Schreibe als um.
Schritt 3.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.7
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.7.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.7.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.7.3
Ersetze alle durch .
Schritt 3.8
Mutltipliziere mit .
Schritt 3.9
Schreibe als um.
Schritt 3.10
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.11
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.11.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.11.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.11.3
Ersetze alle durch .
Schritt 3.12
Mutltipliziere mit .
Schritt 3.13
Schreibe als um.
Schritt 3.14
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.15
Schreibe als um.
Schritt 3.16
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.17
Addiere und .
Schritt 3.18
Vereinfache.
Schritt 3.18.1
Wende das Distributivgesetz an.
Schritt 3.18.2
Vereine die Terme
Schritt 3.18.2.1
Mutltipliziere mit .
Schritt 3.18.2.2
Mutltipliziere mit .
Schritt 3.18.2.3
Mutltipliziere mit .
Schritt 3.18.2.4
Mutltipliziere mit .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Schreibe die Gleichung als um.
Schritt 5.2
Faktorisiere aus heraus.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 5.2.4
Faktorisiere aus heraus.
Schritt 5.2.5
Faktorisiere aus heraus.
Schritt 5.2.6
Faktorisiere aus heraus.
Schritt 5.2.7
Faktorisiere aus heraus.
Schritt 5.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.3.1
Teile jeden Ausdruck in durch .
Schritt 5.3.2
Vereinfache die linke Seite.
Schritt 5.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2
Forme den Ausdruck um.
Schritt 5.3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.2.2
Dividiere durch .
Schritt 6
Ersetze durch .