Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Mutltipliziere mit .
Schritt 2
Differenziere beide Seiten der Gleichung.
Schritt 3
Die Ableitung von nach ist .
Schritt 4
Schritt 4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.2
Berechne .
Schritt 4.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.3
Kombiniere und .
Schritt 4.2.4
Kombiniere und .
Schritt 4.2.5
Kürze den gemeinsamen Faktor von .
Schritt 4.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.5.2
Dividiere durch .
Schritt 4.3
Berechne .
Schritt 4.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.3
Mutltipliziere mit .
Schritt 4.4
Berechne .
Schritt 4.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.4.3
Mutltipliziere mit .
Schritt 4.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 4.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.5.2
Addiere und .
Schritt 5
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 6
Ersetze durch .