Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.1.2
Die Ableitung von nach ist .
Schritt 2.2.1.3
Ersetze alle durch .
Schritt 2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Schreibe als um.
Schritt 2.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.5
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Stelle die Terme um.
Schritt 3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Vereinfache die linke Seite.
Schritt 5.1.1
Stelle die Faktoren in um.
Schritt 5.2
Vereinfache .
Schritt 5.2.1
Vereinfache den Ausdruck.
Schritt 5.2.1.1
Bewege .
Schritt 5.2.1.2
Stelle und um.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 5.2.4
Faktorisiere aus heraus.
Schritt 5.2.5
Ordne Terme um.
Schritt 5.2.6
Wende den trigonometrischen Pythagoras an.
Schritt 5.2.7
Stelle und um.
Schritt 5.2.8
Schreibe als um.
Schritt 5.2.9
Faktorisiere aus heraus.
Schritt 5.2.10
Faktorisiere aus heraus.
Schritt 5.2.11
Faktorisiere aus heraus.
Schritt 5.2.12
Ordne Terme um.
Schritt 5.2.13
Wende den trigonometrischen Pythagoras an.
Schritt 5.3
Addiere zu beiden Seiten der Gleichung.
Schritt 5.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.4.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2
Vereinfache die linke Seite.
Schritt 5.4.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.4.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.4.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.2.2
Forme den Ausdruck um.
Schritt 5.4.2.3
Kürze den gemeinsamen Faktor von .
Schritt 5.4.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.3.2
Dividiere durch .
Schritt 5.4.3
Vereinfache die rechte Seite.
Schritt 5.4.3.1
Kürze den gemeinsamen Faktor von .
Schritt 5.4.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.3.1.2
Forme den Ausdruck um.
Schritt 5.4.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Ersetze durch .