Analysis Beispiele

dy/dx 구하기 x=2 natürlicher Logarithmus von y^2-3
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3
Differenziere die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Differenziere unter Anwendung der Summenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Kombiniere und .
Schritt 3.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Ersetze alle durch .
Schritt 3.5
Schreibe als um.
Schritt 3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.7
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.1
Addiere und .
Schritt 3.7.2
Kombiniere und .
Schritt 3.7.3
Mutltipliziere mit .
Schritt 3.7.4
Kombiniere und .
Schritt 3.7.5
Kombiniere und .
Schritt 3.7.6
Bringe auf die linke Seite von .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe die Gleichung als um.
Schritt 5.2
Multipliziere beide Seiten mit .
Schritt 5.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.1.1.2
Forme den Ausdruck um.
Schritt 5.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1
Mutltipliziere mit .
Schritt 5.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.1.2
Forme den Ausdruck um.
Schritt 5.4.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.2.2
Dividiere durch .
Schritt 5.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.1.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.1.1.1
Faktorisiere aus heraus.
Schritt 5.4.3.1.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.1.1.2.1
Faktorisiere aus heraus.
Schritt 5.4.3.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.4.3.1.1.2.3
Forme den Ausdruck um.
Schritt 5.4.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Ersetze durch .