Analysis Beispiele

dy/dx 구하기 e^y=x^3 natürlicher Logarithmus von x
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.1.3
Ersetze alle durch .
Schritt 2.2
Schreibe als um.
Schritt 3
Differenziere die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.2
Die Ableitung von nach ist .
Schritt 3.3
Differenziere unter Anwendung der Potenzregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Kombiniere und .
Schritt 3.3.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Faktorisiere aus heraus.
Schritt 3.3.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.1
Potenziere mit .
Schritt 3.3.2.2.2
Faktorisiere aus heraus.
Schritt 3.3.2.2.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.2.4
Forme den Ausdruck um.
Schritt 3.3.2.2.5
Dividiere durch .
Schritt 3.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.4
Stelle die Terme um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 6
Ersetze durch .