Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3
Schritt 3.1
Differenziere.
Schritt 3.1.1
Kombiniere und .
Schritt 3.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Schreibe als um.
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.5
Schreibe als um.
Schritt 3.6
Kombiniere und .
Schritt 3.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.8
Addiere und .
Schritt 3.9
Vereinfache.
Schritt 3.9.1
Wende das Distributivgesetz an.
Schritt 3.9.2
Vereine die Terme
Schritt 3.9.2.1
Kombiniere und .
Schritt 3.9.2.2
Kombiniere und .
Schritt 3.9.2.3
Kombiniere und .
Schritt 3.9.2.4
Bringe auf die linke Seite von .
Schritt 3.9.2.5
Mutltipliziere mit .
Schritt 3.9.3
Stelle die Terme um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Schreibe die Gleichung als um.
Schritt 5.2
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 5.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 5.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Schritt 5.2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 5.2.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 5.2.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 5.2.6
Der Teiler von ist selbst.
occurs time.
Schritt 5.2.7
Der Teiler von ist selbst.
occurs time.
Schritt 5.2.8
Der Teiler von ist selbst.
occurs time.
Schritt 5.2.9
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 5.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 5.3.1
Multipliziere jeden Term in mit .
Schritt 5.3.2
Vereinfache die linke Seite.
Schritt 5.3.2.1
Vereinfache jeden Term.
Schritt 5.3.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.1.2
Forme den Ausdruck um.
Schritt 5.3.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.2.1
Faktorisiere aus heraus.
Schritt 5.3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2.3
Forme den Ausdruck um.
Schritt 5.3.3
Vereinfache die rechte Seite.
Schritt 5.3.3.1
Mutltipliziere mit .
Schritt 5.4
Löse die Gleichung.
Schritt 5.4.1
Faktorisiere aus heraus.
Schritt 5.4.1.1
Potenziere mit .
Schritt 5.4.1.2
Faktorisiere aus heraus.
Schritt 5.4.1.3
Faktorisiere aus heraus.
Schritt 5.4.1.4
Faktorisiere aus heraus.
Schritt 5.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.4.2.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2.2
Vereinfache die linke Seite.
Schritt 5.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.2.1.2
Dividiere durch .
Schritt 6
Ersetze durch .