Analysis Beispiele

dy/dx 구하기 natürlicher Logarithmus von x+ natürlicher Logarithmus von y=3x-3y
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.1.2
Die Ableitung von nach ist .
Schritt 2.3.1.3
Ersetze alle durch .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Kombiniere und .
Schritt 3
Differenziere die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Schreibe als um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 5.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Schritt 5.2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 5.2.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 5.2.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 5.2.6
Der Teiler von ist selbst.
occurs time.
Schritt 5.2.7
Der Teiler von ist selbst.
occurs time.
Schritt 5.2.8
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 5.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Multipliziere jeden Term in mit .
Schritt 5.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.1.1
Faktorisiere aus heraus.
Schritt 5.3.2.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.1.3
Forme den Ausdruck um.
Schritt 5.3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.2.1
Faktorisiere aus heraus.
Schritt 5.3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2.3
Forme den Ausdruck um.
Schritt 5.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Entferne die Klammern.
Schritt 5.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.4.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Faktorisiere aus heraus.
Schritt 5.4.2.2
Faktorisiere aus heraus.
Schritt 5.4.2.3
Faktorisiere aus heraus.
Schritt 5.4.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.1
Teile jeden Ausdruck in durch .
Schritt 5.4.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.3.2.1.2
Forme den Ausdruck um.
Schritt 5.4.3.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.3.2.2.2
Dividiere durch .
Schritt 5.4.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.3.3.1.1.2
Forme den Ausdruck um.
Schritt 5.4.3.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.4.3.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.4.3.3.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.3.3.1
Mutltipliziere mit .
Schritt 5.4.3.3.3.2
Stelle die Faktoren von um.
Schritt 5.4.3.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.4.3.3.5
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.3.5.1
Faktorisiere aus heraus.
Schritt 5.4.3.3.5.2
Faktorisiere aus heraus.
Schritt 5.4.3.3.5.3
Faktorisiere aus heraus.
Schritt 6
Ersetze durch .