Analysis Beispiele

dy/dx 구하기 x = natural log of 1-7y^2
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3
Differenziere die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.1.2
Die Ableitung von nach ist .
Schritt 3.1.3
Ersetze alle durch .
Schritt 3.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.2.3
Addiere und .
Schritt 3.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.5
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.5.1
Kombiniere und .
Schritt 3.2.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Ersetze alle durch .
Schritt 3.4
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Mutltipliziere mit .
Schritt 3.4.2
Kombiniere und .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.4.4
Kombiniere und .
Schritt 3.4.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.5.1
Bringe auf die linke Seite von .
Schritt 3.4.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.5
Schreibe als um.
Schritt 3.6
Kombiniere und .
Schritt 3.7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.7.2
Stelle die Faktoren in um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe die Gleichung als um.
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.2.2.2
Dividiere durch .
Schritt 5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Dividiere durch .
Schritt 5.3
Multipliziere beide Seiten mit .
Schritt 5.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.1.1.2
Forme den Ausdruck um.
Schritt 5.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.1
Wende das Distributivgesetz an.
Schritt 5.4.2.1.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.2.1
Mutltipliziere mit .
Schritt 5.4.2.1.2.2
Mutltipliziere mit .
Schritt 5.4.2.1.2.3
Stelle und um.
Schritt 5.5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Teile jeden Ausdruck in durch .
Schritt 5.5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.2.1.2
Forme den Ausdruck um.
Schritt 5.5.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.2.2.2
Dividiere durch .
Schritt 5.5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.1.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.1.1.1
Faktorisiere aus heraus.
Schritt 5.5.3.1.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.1.1.2.1
Faktorisiere aus heraus.
Schritt 5.5.3.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.5.3.1.1.2.3
Forme den Ausdruck um.
Schritt 5.5.3.1.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.5.3.1.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.1.2.2.1
Faktorisiere aus heraus.
Schritt 5.5.3.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.5.3.1.2.2.3
Forme den Ausdruck um.
Schritt 5.5.3.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Ersetze durch .