Analysis Beispiele

Ermittle die Fläche zwischen den Kurven y=x , y=x^3 , x=0 , x=1
, , ,
Schritt 1
Löse durch Einsetzen (Substitution), um den Schnittpunkt von beiden Kurven zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Eliminiere die beiden gleichen Seiten jeder Gleichung und vereine.
Schritt 1.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1.1
Potenziere mit .
Schritt 1.2.2.1.2
Faktorisiere aus heraus.
Schritt 1.2.2.1.3
Faktorisiere aus heraus.
Schritt 1.2.2.1.4
Faktorisiere aus heraus.
Schritt 1.2.2.2
Schreibe als um.
Schritt 1.2.2.3
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.3.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.2.2.3.2
Entferne unnötige Klammern.
Schritt 1.2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 1.2.4
Setze gleich .
Schritt 1.2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Setze gleich .
Schritt 1.2.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Setze gleich .
Schritt 1.2.6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.6.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.6.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.2.6.2.2.2.2
Dividiere durch .
Schritt 1.2.6.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.2.3.1
Dividiere durch .
Schritt 1.2.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 1.3
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Ersetze durch .
Schritt 1.3.2
Setze für in ein, löse dann nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Entferne die Klammern.
Schritt 1.3.2.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Ersetze durch .
Schritt 1.4.2
Potenziere mit .
Schritt 1.5
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Ersetze durch .
Schritt 1.5.2
Setze für in ein, löse dann nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1
Entferne die Klammern.
Schritt 1.5.2.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.6
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 2
Die Fläche des Bereichs zwischen den Kurven ist definiert als das Integral der oberen Kurve minus dem Integral der unteren Kurve in jedem Abschnitt. Die Abschnitte werden durch die Schnittpunkte der Kurven bestimmt. Dies kann algebraisch oder graphisch erfolgen.
Schritt 3
Integriere, um die Fläche zwischen und zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kombiniere die Integrale zu einem einzigen Integral.
Schritt 3.2
Multipliziere mit .
Schritt 3.3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 3.5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3.6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 3.7
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.1
Kombiniere und .
Schritt 3.7.2
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.2.1
Berechne bei und .
Schritt 3.7.2.2
Berechne bei und .
Schritt 3.7.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.2.3.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.7.2.3.2
Mutltipliziere mit .
Schritt 3.7.2.3.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.7.2.3.4
Mutltipliziere mit .
Schritt 3.7.2.3.5
Mutltipliziere mit .
Schritt 3.7.2.3.6
Addiere und .
Schritt 3.7.2.3.7
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.7.2.3.8
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.7.2.3.9
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.2.3.9.1
Faktorisiere aus heraus.
Schritt 3.7.2.3.9.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.2.3.9.2.1
Faktorisiere aus heraus.
Schritt 3.7.2.3.9.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.7.2.3.9.2.3
Forme den Ausdruck um.
Schritt 3.7.2.3.9.2.4
Dividiere durch .
Schritt 3.7.2.3.10
Mutltipliziere mit .
Schritt 3.7.2.3.11
Addiere und .
Schritt 3.7.2.3.12
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.7.2.3.13
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.2.3.13.1
Mutltipliziere mit .
Schritt 3.7.2.3.13.2
Mutltipliziere mit .
Schritt 3.7.2.3.14
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.7.2.3.15
Subtrahiere von .
Schritt 4