Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Differenziere.
Schritt 3.3.1
Mutltipliziere mit .
Schritt 3.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.5
Mutltipliziere mit .
Schritt 3.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.7
Kombiniere Brüche.
Schritt 3.3.7.1
Addiere und .
Schritt 3.3.7.2
Kombiniere und .
Schritt 3.3.7.3
Kombiniere und .
Schritt 3.4
Vereinfache.
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.1.1
Faktorisiere aus heraus.
Schritt 3.4.1.2
Faktorisiere aus heraus.
Schritt 3.4.1.3
Faktorisiere aus heraus.
Schritt 3.4.2
Faktorisiere aus heraus.
Schritt 3.4.3
Faktorisiere aus heraus.
Schritt 3.4.4
Separiere Brüche.
Schritt 3.4.5
Dividiere durch .
Schritt 3.4.6
Kombiniere und .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Ersetze durch .