Analysis Beispiele

Ermittle die kritischen Punkte f(x)=2x^2+108/x
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Schreibe als um.
Schritt 1.1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.4
Mutltipliziere mit .
Schritt 1.1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.4.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.2.1
Kombiniere und .
Schritt 1.1.4.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 2.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Multipliziere jeden Term in mit .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1.1
Bewege .
Schritt 2.3.2.1.1.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1.2.1
Potenziere mit .
Schritt 2.3.2.1.1.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.2.1.1.3
Addiere und .
Schritt 2.3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2.3
Forme den Ausdruck um.
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Mutltipliziere mit .
Schritt 2.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4.3
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.1.1
Faktorisiere aus heraus.
Schritt 2.4.3.1.2
Faktorisiere aus heraus.
Schritt 2.4.3.1.3
Faktorisiere aus heraus.
Schritt 2.4.3.2
Schreibe als um.
Schritt 2.4.3.3
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 2.4.3.4
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.4.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.4.1.1
Bringe auf die linke Seite von .
Schritt 2.4.3.4.1.2
Potenziere mit .
Schritt 2.4.3.4.2
Entferne unnötige Klammern.
Schritt 2.4.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.5.1
Setze gleich .
Schritt 2.4.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.1
Setze gleich .
Schritt 2.4.6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2.4.6.2.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 2.4.6.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.3.1.1
Potenziere mit .
Schritt 2.4.6.2.3.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.3.1.2.1
Mutltipliziere mit .
Schritt 2.4.6.2.3.1.2.2
Mutltipliziere mit .
Schritt 2.4.6.2.3.1.3
Subtrahiere von .
Schritt 2.4.6.2.3.1.4
Schreibe als um.
Schritt 2.4.6.2.3.1.5
Schreibe als um.
Schritt 2.4.6.2.3.1.6
Schreibe als um.
Schritt 2.4.6.2.3.1.7
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.3.1.7.1
Faktorisiere aus heraus.
Schritt 2.4.6.2.3.1.7.2
Schreibe als um.
Schritt 2.4.6.2.3.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 2.4.6.2.3.1.9
Bringe auf die linke Seite von .
Schritt 2.4.6.2.3.2
Mutltipliziere mit .
Schritt 2.4.6.2.4
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.4.1.1
Potenziere mit .
Schritt 2.4.6.2.4.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.4.1.2.1
Mutltipliziere mit .
Schritt 2.4.6.2.4.1.2.2
Mutltipliziere mit .
Schritt 2.4.6.2.4.1.3
Subtrahiere von .
Schritt 2.4.6.2.4.1.4
Schreibe als um.
Schritt 2.4.6.2.4.1.5
Schreibe als um.
Schritt 2.4.6.2.4.1.6
Schreibe als um.
Schritt 2.4.6.2.4.1.7
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.4.1.7.1
Faktorisiere aus heraus.
Schritt 2.4.6.2.4.1.7.2
Schreibe als um.
Schritt 2.4.6.2.4.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 2.4.6.2.4.1.9
Bringe auf die linke Seite von .
Schritt 2.4.6.2.4.2
Mutltipliziere mit .
Schritt 2.4.6.2.4.3
Ändere das zu .
Schritt 2.4.6.2.4.4
Schreibe als um.
Schritt 2.4.6.2.4.5
Faktorisiere aus heraus.
Schritt 2.4.6.2.4.6
Faktorisiere aus heraus.
Schritt 2.4.6.2.4.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.4.6.2.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.5.1.1
Potenziere mit .
Schritt 2.4.6.2.5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.5.1.2.1
Mutltipliziere mit .
Schritt 2.4.6.2.5.1.2.2
Mutltipliziere mit .
Schritt 2.4.6.2.5.1.3
Subtrahiere von .
Schritt 2.4.6.2.5.1.4
Schreibe als um.
Schritt 2.4.6.2.5.1.5
Schreibe als um.
Schritt 2.4.6.2.5.1.6
Schreibe als um.
Schritt 2.4.6.2.5.1.7
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.2.5.1.7.1
Faktorisiere aus heraus.
Schritt 2.4.6.2.5.1.7.2
Schreibe als um.
Schritt 2.4.6.2.5.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 2.4.6.2.5.1.9
Bringe auf die linke Seite von .
Schritt 2.4.6.2.5.2
Mutltipliziere mit .
Schritt 2.4.6.2.5.3
Ändere das zu .
Schritt 2.4.6.2.5.4
Schreibe als um.
Schritt 2.4.6.2.5.5
Faktorisiere aus heraus.
Schritt 2.4.6.2.5.6
Faktorisiere aus heraus.
Schritt 2.4.6.2.5.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.4.6.2.6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 2.4.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Schreibe als um.
Schritt 3.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.2.2.3
Plus oder Minus ist .
Schritt 4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Potenziere mit .
Schritt 4.1.2.1.2
Mutltipliziere mit .
Schritt 4.1.2.1.3
Dividiere durch .
Schritt 4.1.2.2
Addiere und .
Schritt 4.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Schritt 4.3
Liste all Punkte auf.
Schritt 5