Analysis Beispiele

Ermittle die kritischen Punkte f(x)=(x-2)^-1
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3
Ersetze alle durch .
Schritt 1.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.4.1
Addiere und .
Schritt 1.1.2.4.2
Mutltipliziere mit .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.3
Setze den Zähler gleich Null.
Schritt 2.4
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Es gibt keine Werte von im Definitionsbereich, wo die Ableitung ist oder nicht definiert ist.
Keine kritischen Punkte gefunden