Analysis Beispiele

Finde die horizontale Tangente f(x)=2(x-1)^2
Schritt 1
Bestimme die Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende das Distributivgesetz an.
Schritt 1.2.2
Wende das Distributivgesetz an.
Schritt 1.2.3
Wende das Distributivgesetz an.
Schritt 1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Mutltipliziere mit .
Schritt 1.3.1.2
Bringe auf die linke Seite von .
Schritt 1.3.1.3
Schreibe als um.
Schritt 1.3.1.4
Schreibe als um.
Schritt 1.3.1.5
Mutltipliziere mit .
Schritt 1.3.2
Subtrahiere von .
Schritt 1.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.9
Mutltipliziere mit .
Schritt 1.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.11
Addiere und .
Schritt 1.12
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.12.1
Wende das Distributivgesetz an.
Schritt 1.12.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.12.2.1
Mutltipliziere mit .
Schritt 1.12.2.2
Mutltipliziere mit .
Schritt 2
Setze die Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Dividiere durch .
Schritt 3
Löse die ursprüngliche Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Subtrahiere von .
Schritt 3.2.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.2.4
Die endgültige Lösung ist .
Schritt 4
Die horizontale Tangentenlinie der Funktion ist .
Schritt 5