Analysis Beispiele

Finde die horizontale Tangente f(x)=x^3-6x
Schritt 1
Bestimme die Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 2
Setze die Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Dividiere durch .
Schritt 2.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Löse die ursprüngliche Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Schreibe als um.
Schritt 3.2.1.2
Potenziere mit .
Schritt 3.2.1.3
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.1
Faktorisiere aus heraus.
Schritt 3.2.1.3.2
Schreibe als um.
Schritt 3.2.1.4
Ziehe Terme aus der Wurzel heraus.
Schritt 3.2.2
Subtrahiere von .
Schritt 3.2.3
Die endgültige Lösung ist .
Schritt 4
Löse die ursprüngliche Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Wende die Produktregel auf an.
Schritt 4.2.1.2
Potenziere mit .
Schritt 4.2.1.3
Schreibe als um.
Schritt 4.2.1.4
Potenziere mit .
Schritt 4.2.1.5
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.5.1
Faktorisiere aus heraus.
Schritt 4.2.1.5.2
Schreibe als um.
Schritt 4.2.1.6
Ziehe Terme aus der Wurzel heraus.
Schritt 4.2.1.7
Mutltipliziere mit .
Schritt 4.2.1.8
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 5
Die horizontalen Tangenten der Funktion sind .
Schritt 6