Analysis Beispiele

Finde die horizontale Tangente y=5x-x^2
Schritt 1
Stelle und um.
Schritt 2
Stelle als Funktion von auf.
Schritt 3
Bestimme die Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 4
Setze die Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Teile jeden Ausdruck in durch .
Schritt 4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.2
Dividiere durch .
Schritt 4.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5
Löse die ursprüngliche Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Wende die Produktregel auf an.
Schritt 5.2.1.2
Potenziere mit .
Schritt 5.2.1.3
Potenziere mit .
Schritt 5.2.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.4.1
Kombiniere und .
Schritt 5.2.1.4.2
Mutltipliziere mit .
Schritt 5.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Mutltipliziere mit .
Schritt 5.2.3.2
Mutltipliziere mit .
Schritt 5.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.1
Mutltipliziere mit .
Schritt 5.2.5.2
Addiere und .
Schritt 5.2.6
Die endgültige Lösung ist .
Schritt 6
Die horizontale Tangentenlinie der Funktion ist .
Schritt 7