Analysis Beispiele

Finde die horizontale Tangente y=(x-1)/(x+1)
Schritt 1
Stelle als Funktion von auf.
Schritt 2
Bestimme die Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Addiere und .
Schritt 2.2.4.2
Mutltipliziere mit .
Schritt 2.2.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.8
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.8.1
Addiere und .
Schritt 2.2.8.2
Mutltipliziere mit .
Schritt 2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Wende das Distributivgesetz an.
Schritt 2.3.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Subtrahiere von .
Schritt 2.3.2.1.2
Addiere und .
Schritt 2.3.2.2
Mutltipliziere mit .
Schritt 2.3.2.3
Addiere und .
Schritt 3
Setze die Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze den Zähler gleich Null.
Schritt 3.2
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 4
Das Gleichsetzen der Ableitung mit , , ergibt keine Lösungen, folglich gibt es keine horizontalen Tangenten.
Keine horizontalen Tangenten gefunden
Schritt 5