Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Schritt 2.1
Differenziere.
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Berechne .
Schritt 2.2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.1.3
Ersetze alle durch .
Schritt 2.2.2
Schreibe als um.
Schritt 2.3
Stelle die Terme um.
Schritt 3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Schritt 5.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.2
Forme den Ausdruck um.
Schritt 5.2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2.2
Dividiere durch .
Schritt 5.2.3
Vereinfache die rechte Seite.
Schritt 5.2.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.3.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.1.2.3
Forme den Ausdruck um.
Schritt 5.2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Ersetze durch .
Schritt 7
Setze den Zähler gleich Null.
Schritt 8
Schritt 8.1
Vereinfache .
Schritt 8.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 8.1.2
Addiere und .
Schritt 8.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 8.3
Vereinfache .
Schritt 8.3.1
Schreibe als um.
Schritt 8.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 8.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 8.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 8.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 8.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 9
Ermittle die Punkte an denen .
Schritt 10