Analysis Beispiele

Finde das absolute Maximum und Minimum im Intervall f(x)=3x^(2/3) , [-27,27]
,
Schritt 1
Ermittle die kritischen Punkte.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.1.4
Kombiniere und .
Schritt 1.1.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.1.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.6.1
Mutltipliziere mit .
Schritt 1.1.1.6.2
Subtrahiere von .
Schritt 1.1.1.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.1.8
Kombiniere und .
Schritt 1.1.1.9
Kombiniere und .
Schritt 1.1.1.10
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.10.1
Mutltipliziere mit .
Schritt 1.1.1.10.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.1.1.11
Faktorisiere aus heraus.
Schritt 1.1.1.12
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.12.1
Faktorisiere aus heraus.
Schritt 1.1.1.12.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.1.12.3
Forme den Ausdruck um.
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Setze den Zähler gleich Null.
Schritt 1.2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Wandel Ausdrücke mit gebrochenen Exponenten in Wurzeln um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 1.3.1.2
Alles, was auf angehoben wird, ist die Basis selbst.
Schritt 1.3.2
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur dritten Potenz.
Schritt 1.3.3.2
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.1
Benutze , um als neu zu schreiben.
Schritt 1.3.3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.2.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.3.3.2.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.2.2.1.1.2.2
Forme den Ausdruck um.
Schritt 1.3.3.2.2.1.2
Vereinfache.
Schritt 1.3.3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.1.1
Schreibe als um.
Schritt 1.4.1.2.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.4.1.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.1.2.2.2
Forme den Ausdruck um.
Schritt 1.4.1.2.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.3.2
Mutltipliziere mit .
Schritt 1.4.2
Liste all Punkte auf.
Schritt 2
Werte die enthaltenen Endpunkte aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Ersetze durch .
Schritt 2.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Schreibe als um.
Schritt 2.1.2.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.2.2
Forme den Ausdruck um.
Schritt 2.1.2.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.3.1
Potenziere mit .
Schritt 2.1.2.3.2
Mutltipliziere mit .
Schritt 2.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Ersetze durch .
Schritt 2.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Schreibe als um.
Schritt 2.2.2.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.2.2
Forme den Ausdruck um.
Schritt 2.2.2.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.3.1
Potenziere mit .
Schritt 2.2.2.3.2
Mutltipliziere mit .
Schritt 2.3
Liste all Punkte auf.
Schritt 3
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 4