Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Benutze , um als neu zu schreiben.
Schritt 1.1.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.1.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Ersetze alle durch .
Schritt 1.1.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.5
Kombiniere und .
Schritt 1.1.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.7
Vereinfache den Zähler.
Schritt 1.1.7.1
Mutltipliziere mit .
Schritt 1.1.7.2
Subtrahiere von .
Schritt 1.1.8
Kombiniere Brüche.
Schritt 1.1.8.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.8.2
Kombiniere und .
Schritt 1.1.8.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.1.8.4
Kombiniere und .
Schritt 1.1.9
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.10
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.12
Vereinfache den Ausdruck.
Schritt 1.1.12.1
Addiere und .
Schritt 1.1.12.2
Mutltipliziere mit .
Schritt 1.1.13
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.14
Mutltipliziere mit .
Schritt 1.1.15
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.16
Kombiniere und .
Schritt 1.1.17
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.18
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.1.18.1
Bewege .
Schritt 1.1.18.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.18.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.18.4
Addiere und .
Schritt 1.1.18.5
Dividiere durch .
Schritt 1.1.19
Vereinfache .
Schritt 1.1.20
Bringe auf die linke Seite von .
Schritt 1.1.21
Vereinfache.
Schritt 1.1.21.1
Wende das Distributivgesetz an.
Schritt 1.1.21.2
Vereinfache den Zähler.
Schritt 1.1.21.2.1
Mutltipliziere mit .
Schritt 1.1.21.2.2
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Löse die Gleichung nach auf.
Schritt 2.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.2.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2.2
Vereinfache die linke Seite.
Schritt 2.3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.2.1.2
Dividiere durch .
Schritt 2.3.2.3
Vereinfache die rechte Seite.
Schritt 2.3.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Die Werte, die die Ableitung gleich machen, sind .
Schritt 4
Schritt 4.1
Wandel Ausdrücke mit gebrochenen Exponenten in Wurzeln um.
Schritt 4.1.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 4.1.2
Alles, was auf angehoben wird, ist die Basis selbst.
Schritt 4.2
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.3
Löse nach auf.
Schritt 4.3.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 4.3.2
Vereinfache jede Seite der Gleichung.
Schritt 4.3.2.1
Benutze , um als neu zu schreiben.
Schritt 4.3.2.2
Vereinfache die linke Seite.
Schritt 4.3.2.2.1
Vereinfache .
Schritt 4.3.2.2.1.1
Wende die Produktregel auf an.
Schritt 4.3.2.2.1.2
Potenziere mit .
Schritt 4.3.2.2.1.3
Multipliziere die Exponenten in .
Schritt 4.3.2.2.1.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.2.2.1.3.2
Kürze den gemeinsamen Faktor von .
Schritt 4.3.2.2.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.2.1.3.2.2
Forme den Ausdruck um.
Schritt 4.3.2.2.1.4
Vereinfache.
Schritt 4.3.2.2.1.5
Wende das Distributivgesetz an.
Schritt 4.3.2.2.1.6
Mutltipliziere mit .
Schritt 4.3.2.3
Vereinfache die rechte Seite.
Schritt 4.3.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.3.3
Löse nach auf.
Schritt 4.3.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3.3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.3.3.2.1
Teile jeden Ausdruck in durch .
Schritt 4.3.3.2.2
Vereinfache die linke Seite.
Schritt 4.3.3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.3.3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.2.2.1.2
Dividiere durch .
Schritt 4.3.3.2.3
Vereinfache die rechte Seite.
Schritt 4.3.3.2.3.1
Dividiere durch .
Schritt 4.4
Setze den Radikanden in kleiner als , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.5
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 4.6
Die Gleichung ist nicht definiert, wo der Nenner gleich , das Argument einer Quadratwurzel kleiner als oder das Argument eines Logarithmus kleiner oder gleich ist.
Schritt 5
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache den Zähler.
Schritt 6.2.1.1
Mutltipliziere mit .
Schritt 6.2.1.2
Addiere und .
Schritt 6.2.2
Vereinfache den Nenner.
Schritt 6.2.2.1
Addiere und .
Schritt 6.2.2.2
Schreibe als um.
Schritt 6.2.2.3
Berechne den Exponenten.
Schritt 6.2.2.4
Schreibe als um.
Schritt 6.2.3
Multipliziere den Zähler und den Nenner von mit der Konjugierten von , um den Nenner reell zu machen.
Schritt 6.2.4
Multipliziere.
Schritt 6.2.4.1
Kombinieren.
Schritt 6.2.4.2
Vereinfache den Nenner.
Schritt 6.2.4.2.1
Füge Klammern hinzu.
Schritt 6.2.4.2.2
Potenziere mit .
Schritt 6.2.4.2.3
Potenziere mit .
Schritt 6.2.4.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.2.4.2.5
Addiere und .
Schritt 6.2.4.2.6
Schreibe als um.
Schritt 6.2.5
Mutltipliziere mit .
Schritt 6.2.6
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 6.2.7
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies eine imaginäre Zahl beinhaltet, existiert die Funktion nicht in .
Die Funktion ist in nicht real, da imaginär ist
Die Funktion ist in nicht real, da imaginär ist
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache den Zähler.
Schritt 7.2.1.1
Mutltipliziere mit .
Schritt 7.2.1.2
Addiere und .
Schritt 7.2.2
Vereinfache den Nenner.
Schritt 7.2.2.1
Addiere und .
Schritt 7.2.2.2
Schreibe als um.
Schritt 7.2.2.3
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.2.2.4
Kürze den gemeinsamen Faktor von .
Schritt 7.2.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.4.2
Forme den Ausdruck um.
Schritt 7.2.2.5
Berechne den Exponenten.
Schritt 7.2.3
Vereinfache den Ausdruck.
Schritt 7.2.3.1
Mutltipliziere mit .
Schritt 7.2.3.2
Dividiere durch .
Schritt 7.2.4
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Vereinfache den Zähler.
Schritt 8.2.1.1
Mutltipliziere mit .
Schritt 8.2.1.2
Addiere und .
Schritt 8.2.2
Vereinfache den Nenner.
Schritt 8.2.2.1
Addiere und .
Schritt 8.2.2.2
Schreibe als um.
Schritt 8.2.2.3
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 8.2.2.4
Kürze den gemeinsamen Faktor von .
Schritt 8.2.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.2.4.2
Forme den Ausdruck um.
Schritt 8.2.2.5
Berechne den Exponenten.
Schritt 8.2.3
Vereinfache den Ausdruck.
Schritt 8.2.3.1
Mutltipliziere mit .
Schritt 8.2.3.2
Dividiere durch .
Schritt 8.2.4
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 9
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 10