Analysis Beispiele

Ermittle die Wendepunkte f(x)=6x^4+32x^3
Schritt 1
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3
Mutltipliziere mit .
Schritt 1.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3.3
Mutltipliziere mit .
Schritt 1.3
Die zweite Ableitung von nach ist .
Schritt 2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die zweite Ableitung gleich .
Schritt 2.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere aus heraus.
Schritt 2.2.3
Faktorisiere aus heraus.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich .
Schritt 2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.5.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.2.2.1.2
Dividiere durch .
Schritt 2.5.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Bestimme die Punkte, an denen die zweite Ableitung gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.1.2.1.2
Mutltipliziere mit .
Schritt 3.1.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.1.2.1.4
Mutltipliziere mit .
Schritt 3.1.2.2
Addiere und .
Schritt 3.1.2.3
Die endgültige Lösung ist .
Schritt 3.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 3.3
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1.1
Wende die Produktregel auf an.
Schritt 3.3.2.1.1.2
Wende die Produktregel auf an.
Schritt 3.3.2.1.2
Potenziere mit .
Schritt 3.3.2.1.3
Mutltipliziere mit .
Schritt 3.3.2.1.4
Potenziere mit .
Schritt 3.3.2.1.5
Potenziere mit .
Schritt 3.3.2.1.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.6.1
Faktorisiere aus heraus.
Schritt 3.3.2.1.6.2
Faktorisiere aus heraus.
Schritt 3.3.2.1.6.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.6.4
Forme den Ausdruck um.
Schritt 3.3.2.1.7
Kombiniere und .
Schritt 3.3.2.1.8
Mutltipliziere mit .
Schritt 3.3.2.1.9
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.9.1
Wende die Produktregel auf an.
Schritt 3.3.2.1.9.2
Wende die Produktregel auf an.
Schritt 3.3.2.1.10
Potenziere mit .
Schritt 3.3.2.1.11
Potenziere mit .
Schritt 3.3.2.1.12
Potenziere mit .
Schritt 3.3.2.1.13
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.13.1
Mutltipliziere mit .
Schritt 3.3.2.1.13.2
Kombiniere und .
Schritt 3.3.2.1.13.3
Mutltipliziere mit .
Schritt 3.3.2.1.14
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.2.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.2.2.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.2.1
Subtrahiere von .
Schritt 3.3.2.2.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.2.3
Die endgültige Lösung ist .
Schritt 3.4
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 3.5
Bestimme die Punkte, die Wendepunkte sein könnten.
Schritt 4
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 5
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.1.3
Mutltipliziere mit .
Schritt 5.2.2
Subtrahiere von .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 6
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.2
Subtrahiere von .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Potenziere mit .
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
Mutltipliziere mit .
Schritt 7.2.2
Addiere und .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
Ein Wendepunkt ist ein Punkt auf einer Kurve, an dem die Konkavität das Vorzeichen von Plus zu Minus oder von Minus zu Plus ändert. In diesem Fall sind die Wendepunkte .
Schritt 9