Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die erste Ableitung.
Schritt 2.1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.1.2
Differenziere.
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.4
Vereinfache den Ausdruck.
Schritt 2.1.2.4.1
Addiere und .
Schritt 2.1.2.4.2
Mutltipliziere mit .
Schritt 2.1.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.1.4
Kombiniere und .
Schritt 2.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.6
Vereinfache den Zähler.
Schritt 2.1.6.1
Mutltipliziere mit .
Schritt 2.1.6.2
Subtrahiere von .
Schritt 2.1.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.8
Kombiniere und .
Schritt 2.1.9
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.1.10
Vereinfache.
Schritt 2.1.10.1
Wende das Distributivgesetz an.
Schritt 2.1.10.2
Vereine die Terme
Schritt 2.1.10.2.1
Kombiniere und .
Schritt 2.1.10.2.2
Bringe in den Zähler mithilfe der Regel des negativen Exponenten .
Schritt 2.1.10.2.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.10.2.3.1
Mutltipliziere mit .
Schritt 2.1.10.2.3.1.1
Potenziere mit .
Schritt 2.1.10.2.3.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.10.2.3.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 2.1.10.2.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.10.2.3.4
Subtrahiere von .
Schritt 2.1.10.2.4
Kombiniere und .
Schritt 2.1.10.2.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.10.2.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.1.10.2.7
Kombiniere und .
Schritt 2.1.10.2.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.10.2.9
Bringe auf die linke Seite von .
Schritt 2.1.10.2.10
Addiere und .
Schritt 2.2
Bestimme die zweite Ableitung.
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Berechne .
Schritt 2.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.2.4
Kombiniere und .
Schritt 2.2.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.2.6
Vereinfache den Zähler.
Schritt 2.2.2.6.1
Mutltipliziere mit .
Schritt 2.2.2.6.2
Subtrahiere von .
Schritt 2.2.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.2.8
Kombiniere und .
Schritt 2.2.2.9
Mutltipliziere mit .
Schritt 2.2.2.10
Mutltipliziere mit .
Schritt 2.2.2.11
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.2.3
Berechne .
Schritt 2.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3.2
Schreibe als um.
Schritt 2.2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.3.3
Ersetze alle durch .
Schritt 2.2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.5
Multipliziere die Exponenten in .
Schritt 2.2.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.3.5.2
Multipliziere .
Schritt 2.2.3.5.2.1
Kombiniere und .
Schritt 2.2.3.5.2.2
Mutltipliziere mit .
Schritt 2.2.3.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.3.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.3.7
Kombiniere und .
Schritt 2.2.3.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.3.9
Vereinfache den Zähler.
Schritt 2.2.3.9.1
Mutltipliziere mit .
Schritt 2.2.3.9.2
Subtrahiere von .
Schritt 2.2.3.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.3.11
Kombiniere und .
Schritt 2.2.3.12
Kombiniere und .
Schritt 2.2.3.13
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.3.13.1
Bewege .
Schritt 2.2.3.13.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.3.13.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.3.13.4
Subtrahiere von .
Schritt 2.2.3.13.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.3.14
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.2.3.15
Mutltipliziere mit .
Schritt 2.2.3.16
Mutltipliziere mit .
Schritt 2.2.3.17
Mutltipliziere mit .
Schritt 2.2.3.18
Mutltipliziere mit .
Schritt 2.2.3.19
Mutltipliziere mit .
Schritt 2.3
Die zweite Ableitung von nach ist .
Schritt 3
Schritt 3.1
Setze die zweite Ableitung gleich .
Schritt 3.2
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 3.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Schritt 3.2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 3.2.4
hat Faktoren von und .
Schritt 3.2.5
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 3.2.6
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 3.2.7
Mutltipliziere mit .
Schritt 3.2.8
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 3.2.9
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 3.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 3.3.1
Multipliziere jeden Term in mit .
Schritt 3.3.2
Vereinfache die linke Seite.
Schritt 3.3.2.1
Vereinfache jeden Term.
Schritt 3.3.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2.2
Forme den Ausdruck um.
Schritt 3.3.2.1.3
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.3.1
Faktorisiere aus heraus.
Schritt 3.3.2.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.3.3
Forme den Ausdruck um.
Schritt 3.3.2.1.4
Dividiere durch .
Schritt 3.3.2.1.5
Vereinfache.
Schritt 3.3.2.1.6
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3.2.1.7
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.7.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.7.2
Forme den Ausdruck um.
Schritt 3.3.2.1.8
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.8.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.8.2
Forme den Ausdruck um.
Schritt 3.3.3
Vereinfache die rechte Seite.
Schritt 3.3.3.1
Multipliziere .
Schritt 3.3.3.1.1
Mutltipliziere mit .
Schritt 3.3.3.1.2
Mutltipliziere mit .
Schritt 3.4
Löse die Gleichung.
Schritt 3.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.2.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2.2
Vereinfache die linke Seite.
Schritt 3.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.2.1.2
Dividiere durch .
Schritt 3.4.2.3
Vereinfache die rechte Seite.
Schritt 3.4.2.3.1
Dividiere durch .
Schritt 4
Schritt 4.1
Ersetze in , um den Wert von zu ermitteln.
Schritt 4.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.1.2
Vereinfache das Ergebnis.
Schritt 4.1.2.1
Subtrahiere von .
Schritt 4.1.2.2
Bringe auf die linke Seite von .
Schritt 4.1.2.3
Die endgültige Lösung ist .
Schritt 4.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 5
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2.2
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 6.2.2.1
Mutltipliziere mit .
Schritt 6.2.2.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 6.2.2.2.1
Bewege .
Schritt 6.2.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.2.2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.2.2.4
Addiere und .
Schritt 6.2.3
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 6.2.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.3.2
Kürze den gemeinsamen Faktor von .
Schritt 6.2.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.3.2.2
Forme den Ausdruck um.
Schritt 6.2.4
Vereinfache den Zähler.
Schritt 6.2.4.1
Berechne den Exponenten.
Schritt 6.2.4.2
Mutltipliziere mit .
Schritt 6.2.4.3
Addiere und .
Schritt 6.2.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2.6
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2.2
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 7.2.2.1
Mutltipliziere mit .
Schritt 7.2.2.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 7.2.2.2.1
Bewege .
Schritt 7.2.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.2.2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.2.2.4
Addiere und .
Schritt 7.2.3
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 7.2.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.3.2
Kürze den gemeinsamen Faktor von .
Schritt 7.2.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.3.2.2
Forme den Ausdruck um.
Schritt 7.2.4
Vereinfache den Zähler.
Schritt 7.2.4.1
Berechne den Exponenten.
Schritt 7.2.4.2
Mutltipliziere mit .
Schritt 7.2.4.3
Addiere und .
Schritt 7.2.5
Die endgültige Lösung ist .
Schritt 7.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Ein Wendepunkt ist ein Punkt auf einer Kurve, an dem die Konkavität das Vorzeichen von Plus zu Minus oder von Minus zu Plus ändert. In diesem Fall ist der Wendepunkt .
Schritt 9