Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die erste Ableitung.
Schritt 2.1.1
Differenziere.
Schritt 2.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2
Berechne .
Schritt 2.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2.2.2
Die Ableitung von nach ist .
Schritt 2.1.2.2.3
Ersetze alle durch .
Schritt 2.1.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.7
Mutltipliziere mit .
Schritt 2.1.2.8
Addiere und .
Schritt 2.1.2.9
Kombiniere und .
Schritt 2.1.2.10
Kombiniere und .
Schritt 2.1.2.11
Mutltipliziere mit .
Schritt 2.1.2.12
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.3
Vereine die Terme
Schritt 2.1.3.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 2.1.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.3.3
Subtrahiere von .
Schritt 2.2
Die erste Ableitung von nach ist .
Schritt 3
Schritt 3.1
Setze die erste Ableitung gleich .
Schritt 3.2
Setze den Zähler gleich Null.
Schritt 3.3
Löse die Gleichung nach auf.
Schritt 3.3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2.2
Vereinfache die linke Seite.
Schritt 3.3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.2.1.2
Dividiere durch .
Schritt 4
Die Werte, die die Ableitung gleich machen, sind .
Schritt 5
Schritt 5.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 5.2
Löse nach auf.
Schritt 5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2.2
Vereinfache die linke Seite.
Schritt 5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2.1.2
Dividiere durch .
Schritt 6
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 7
Schließe die Intervalle aus, die nicht im Definitionsbereich sind.
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Vereinfache den Zähler.
Schritt 8.2.1.1
Mutltipliziere mit .
Schritt 8.2.1.2
Subtrahiere von .
Schritt 8.2.2
Vereinfache den Nenner.
Schritt 8.2.2.1
Mutltipliziere mit .
Schritt 8.2.2.2
Subtrahiere von .
Schritt 8.2.3
Dividiere durch .
Schritt 8.2.4
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 9
Schließe die Intervalle aus, die nicht im Definitionsbereich sind.
Schritt 10
Schritt 10.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.2
Vereinfache das Ergebnis.
Schritt 10.2.1
Vereinfache den Zähler.
Schritt 10.2.1.1
Mutltipliziere mit .
Schritt 10.2.1.2
Subtrahiere von .
Schritt 10.2.2
Vereinfache den Nenner.
Schritt 10.2.2.1
Mutltipliziere mit .
Schritt 10.2.2.2
Subtrahiere von .
Schritt 10.2.3
Dividiere durch .
Schritt 10.2.4
Die endgültige Lösung ist .
Schritt 10.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 11
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 12