Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere unter Anwendung der Faktorregel.
Schritt 1.1.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2
Schreibe als um.
Schritt 1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Ersetze alle durch .
Schritt 1.1.3
Differenziere.
Schritt 1.1.3.1
Mutltipliziere mit .
Schritt 1.1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3.5
Vereinfache den Ausdruck.
Schritt 1.1.3.5.1
Addiere und .
Schritt 1.1.3.5.2
Mutltipliziere mit .
Schritt 1.1.4
Vereinfache.
Schritt 1.1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.4.2
Vereine die Terme
Schritt 1.1.4.2.1
Kombiniere und .
Schritt 1.1.4.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Bestimme die zweite Ableitung.
Schritt 1.2.1
Differenziere unter Anwendung der Faktorregel.
Schritt 1.2.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.1.2
Wende die grundlegenden Potenzregeln an.
Schritt 1.2.1.2.1
Schreibe als um.
Schritt 1.2.1.2.2
Multipliziere die Exponenten in .
Schritt 1.2.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.1.2.2.2
Mutltipliziere mit .
Schritt 1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3
Ersetze alle durch .
Schritt 1.2.3
Differenziere.
Schritt 1.2.3.1
Mutltipliziere mit .
Schritt 1.2.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.3.5
Vereinfache den Ausdruck.
Schritt 1.2.3.5.1
Addiere und .
Schritt 1.2.3.5.2
Mutltipliziere mit .
Schritt 1.2.4
Vereinfache.
Schritt 1.2.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.2.4.2
Kombiniere und .
Schritt 1.3
Die zweite Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die zweite Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 3
Keine Werte gefunden, die die zweite Ableitung gleich machen.
Keine Wendepunkte