Analysis Beispiele

Ermittle die Wendepunkte f(x)=1/((2x-5)^(1/3))
Schritt 1
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Schreibe als um.
Schritt 1.1.1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.1.1.2.2
Kombiniere und .
Schritt 1.1.1.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Ersetze alle durch .
Schritt 1.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.4
Kombiniere und .
Schritt 1.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.6.1
Mutltipliziere mit .
Schritt 1.1.6.2
Subtrahiere von .
Schritt 1.1.7
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.7.2
Kombiniere und .
Schritt 1.1.7.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.1.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.9
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.10
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.11
Mutltipliziere mit .
Schritt 1.1.12
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.13
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.13.1
Addiere und .
Schritt 1.1.13.2
Mutltipliziere mit .
Schritt 1.1.13.3
Kombiniere und .
Schritt 1.1.13.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Differenziere unter Anwendung der Faktorregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.1.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.2.1
Schreibe als um.
Schritt 1.2.1.2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.1.2.2.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.2.2.2.1
Kombiniere und .
Schritt 1.2.1.2.2.2.2
Mutltipliziere mit .
Schritt 1.2.1.2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3
Ersetze alle durch .
Schritt 1.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.4
Kombiniere und .
Schritt 1.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Mutltipliziere mit .
Schritt 1.2.6.2
Subtrahiere von .
Schritt 1.2.7
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.7.2
Kombiniere und .
Schritt 1.2.7.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.7.3.1
Bringe auf die linke Seite von .
Schritt 1.2.7.3.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.2.7.3.3
Mutltipliziere mit .
Schritt 1.2.7.3.4
Mutltipliziere mit .
Schritt 1.2.7.4
Mutltipliziere mit .
Schritt 1.2.7.5
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.7.5.1
Mutltipliziere mit .
Schritt 1.2.7.5.2
Mutltipliziere mit .
Schritt 1.2.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.9
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.10
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.11
Mutltipliziere mit .
Schritt 1.2.12
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.13
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.13.1
Addiere und .
Schritt 1.2.13.2
Kombiniere und .
Schritt 1.2.13.3
Mutltipliziere mit .
Schritt 1.3
Die zweite Ableitung von nach ist .
Schritt 2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die zweite Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 3
Keine Werte gefunden, die die zweite Ableitung gleich machen.
Keine Wendepunkte