Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Schritt 2.1
Kombiniere und .
Schritt 2.2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Kombiniere und .
Schritt 4.3
Kürze den gemeinsamen Teiler von und .
Schritt 4.3.1
Faktorisiere aus heraus.
Schritt 4.3.2
Kürze die gemeinsamen Faktoren.
Schritt 4.3.2.1
Faktorisiere aus heraus.
Schritt 4.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.3
Forme den Ausdruck um.
Schritt 4.3.2.4
Dividiere durch .
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Mutltipliziere mit .
Schritt 5
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 6
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kombiniere und .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Schritt 8.1
Es sei . Ermittle .
Schritt 8.1.1
Differenziere .
Schritt 8.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.1.4
Mutltipliziere mit .
Schritt 8.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 9
Kombiniere und .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Schritt 11.1
Mutltipliziere mit .
Schritt 11.2
Mutltipliziere mit .
Schritt 12
Das Integral von nach ist .
Schritt 13
Schreibe als um.
Schritt 14
Ersetze alle durch .
Schritt 15
Stelle die Terme um.