Analysis Beispiele

Berechne das Integral Integral von 0 bis 1 über (x^2+1)^10(2x) nach x
Schritt 1
Bringe auf die linke Seite von .
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.1.5
Addiere und .
Schritt 3.2
Setze die untere Grenze für in ein.
Schritt 3.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.3.2
Addiere und .
Schritt 3.4
Setze die obere Grenze für in ein.
Schritt 3.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.5.2
Addiere und .
Schritt 3.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 3.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 4
Kombiniere und .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2
Forme den Ausdruck um.
Schritt 6.3
Mutltipliziere mit .
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Berechne bei und .
Schritt 8.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Potenziere mit .
Schritt 8.2.2
Kombiniere und .
Schritt 8.2.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 8.2.4
Mutltipliziere mit .
Schritt 8.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 8.2.6
Subtrahiere von .
Schritt 9
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl:
Schritt 10