Analysis Beispiele

(1,0)에서의 접선 구하기 f(x)=e^(-x) natürlicher Logarithmus von x , (1,0)
,
Schritt 1
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Kombiniere und .
Schritt 1.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.4.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.4.3
Ersetze alle durch .
Schritt 1.5
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.5.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.1
Mutltipliziere mit .
Schritt 1.5.3.2
Bringe auf die linke Seite von .
Schritt 1.5.3.3
Schreibe als um.
Schritt 1.5.3.4
Stelle die Terme um.
Schritt 1.6
Bestimme die Ableitung bei .
Schritt 1.7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.1
Mutltipliziere mit .
Schritt 1.7.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.2.1
Mutltipliziere mit .
Schritt 1.7.2.2
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.7.2.3
Der natürliche Logarithmus von ist .
Schritt 1.7.2.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.2.4.1
Mutltipliziere mit .
Schritt 1.7.2.4.2
Mutltipliziere mit .
Schritt 1.7.2.5
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.7.3
Addiere und .
Schritt 2
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 2.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 2.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Addiere und .
Schritt 2.3.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Wende das Distributivgesetz an.
Schritt 2.3.2.2
Kombiniere und .
Schritt 2.3.2.3
Kombiniere und .
Schritt 2.3.2.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.3
Stelle die Terme um.
Schritt 3