Analysis Beispiele

Berechne das Integral Integral von -3 bis -1 über 2x(5-x^2)^3 nach x
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.3
Mutltipliziere mit .
Schritt 2.1.4
Subtrahiere von .
Schritt 2.2
Setze die untere Grenze für in ein.
Schritt 2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Potenziere mit .
Schritt 2.3.1.2
Mutltipliziere mit .
Schritt 2.3.2
Subtrahiere von .
Schritt 2.4
Setze die obere Grenze für in ein.
Schritt 2.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1.1.1
Potenziere mit .
Schritt 2.5.1.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.5.1.1.2
Addiere und .
Schritt 2.5.1.2
Potenziere mit .
Schritt 2.5.2
Subtrahiere von .
Schritt 2.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 2.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Mutltipliziere mit .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Kombiniere und .
Schritt 7.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Faktorisiere aus heraus.
Schritt 7.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Faktorisiere aus heraus.
Schritt 7.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.3
Forme den Ausdruck um.
Schritt 7.2.2.4
Dividiere durch .
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Kombiniere und .
Schritt 10
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Berechne bei und .
Schritt 10.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Potenziere mit .
Schritt 10.2.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.2.1
Faktorisiere aus heraus.
Schritt 10.2.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.2.2.1
Faktorisiere aus heraus.
Schritt 10.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 10.2.2.2.3
Forme den Ausdruck um.
Schritt 10.2.2.2.4
Dividiere durch .
Schritt 10.2.3
Potenziere mit .
Schritt 10.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.4.1
Faktorisiere aus heraus.
Schritt 10.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.4.2.1
Faktorisiere aus heraus.
Schritt 10.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 10.2.4.2.3
Forme den Ausdruck um.
Schritt 10.2.4.2.4
Dividiere durch .
Schritt 10.2.5
Mutltipliziere mit .
Schritt 10.2.6
Subtrahiere von .
Schritt 10.2.7
Mutltipliziere mit .
Schritt 11