Analysis Beispiele

Berechne das Integral Integral von 0 bis pi/2 über sec(x/2)^2 nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Mutltipliziere mit .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Dividiere durch .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.5.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1
Mutltipliziere mit .
Schritt 1.5.2.2
Mutltipliziere mit .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 2.2
Mutltipliziere mit .
Schritt 2.3
Bringe auf die linke Seite von .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Da die Ableitung von gleich ist, ist das Integral von gleich .
Schritt 5
Berechne bei und .
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Der genau Wert von ist .
Schritt 6.2
Der genau Wert von ist .
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Addiere und .
Schritt 6.5
Mutltipliziere mit .