Analysis Beispiele

Berechne das Integral Integral über sin(3x)^2cos(3x) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2
Die Ableitung von nach ist .
Schritt 1.1.2.3
Ersetze alle durch .
Schritt 1.1.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.3.1
Mutltipliziere mit .
Schritt 1.1.3.3.2
Bringe auf die linke Seite von .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe als um.
Schritt 5.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Mutltipliziere mit .
Schritt 6
Ersetze alle durch .