Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
+ | + | + | + |
Schritt 1.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
+ | + | + | + |
Schritt 1.3
Multipliziere den neuen Bruchterm mit dem Teiler.
+ | + | + | + | ||||||||
+ | + |
Schritt 1.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
+ | + | + | + | ||||||||
- | - |
Schritt 1.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
+ | + | + | + | ||||||||
- | - | ||||||||||
- |
Schritt 1.6
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
+ | + | + | + | ||||||||
- | - | ||||||||||
- | + |
Schritt 1.7
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
- | + |
Schritt 1.8
Multipliziere den neuen Bruchterm mit dem Teiler.
- | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
- | - |
Schritt 1.9
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + |
Schritt 1.10
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ |
Schritt 1.11
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
- | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Schritt 1.12
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Schritt 1.13
Multipliziere den neuen Bruchterm mit dem Teiler.
- | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
+ | + |
Schritt 1.14
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - |
Schritt 1.15
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
Schritt 1.16
Da der Rest gleich ist, ist der Quotient das endgültige Ergebnis.
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 6
Wende die Konstantenregel an.
Schritt 7
Schritt 7.1
Kombiniere und .
Schritt 7.2
Vereinfache.
Schritt 8
Stelle die Terme um.