Analysis Beispiele

(π,0)에서의 접선 구하기 y=sin(sin(x)) , (pi,0)
,
Schritt 1
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2
Die Ableitung von nach ist .
Schritt 1.1.3
Ersetze alle durch .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Stelle die Faktoren von um.
Schritt 1.4
Bestimme die Ableitung bei .
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 1.5.2
Der genau Wert von ist .
Schritt 1.5.3
Mutltipliziere mit .
Schritt 1.5.4
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 1.5.5
Der genau Wert von ist .
Schritt 1.5.6
Der genau Wert von ist .
Schritt 1.5.7
Mutltipliziere mit .
Schritt 2
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 2.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 2.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Addiere und .
Schritt 2.3.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Wende das Distributivgesetz an.
Schritt 2.3.2.2
Schreibe als um.
Schritt 2.3.2.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.3.1
Mutltipliziere mit .
Schritt 2.3.2.3.2
Mutltipliziere mit .
Schritt 3