Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3
Schritt 3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Ersetze alle durch .
Schritt 4
Schritt 4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.6
Vereinfache den Ausdruck.
Schritt 4.6.1
Addiere und .
Schritt 4.6.2
Mutltipliziere mit .
Schritt 4.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.8
Kombiniere Brüche.
Schritt 4.8.1
Mutltipliziere mit .
Schritt 4.8.2
Mutltipliziere mit .
Schritt 5
Schritt 5.1
Faktorisiere aus heraus.
Schritt 5.1.1
Faktorisiere aus heraus.
Schritt 5.1.2
Faktorisiere aus heraus.
Schritt 5.1.3
Faktorisiere aus heraus.
Schritt 5.2
Bringe auf die linke Seite von .
Schritt 5.3
Wende das Distributivgesetz an.
Schritt 5.4
Mutltipliziere mit .
Schritt 5.5
Mutltipliziere mit .
Schritt 5.6
Subtrahiere von .