Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3
Ersetze alle durch .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3
Die Ableitung von nach ist .
Schritt 2.4
Potenziere mit .
Schritt 2.5
Potenziere mit .
Schritt 2.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.7
Addiere und .
Schritt 2.8
Die Ableitung von nach ist .
Schritt 2.9
Potenziere mit .
Schritt 2.10
Potenziere mit .
Schritt 2.11
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.12
Addiere und .
Schritt 2.13
Vereinfache.
Schritt 2.13.1
Wende das Distributivgesetz an.
Schritt 2.13.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.2.3
Ersetze alle durch .
Schritt 3.2.3
Die Ableitung von nach ist .
Schritt 3.2.4
Mutltipliziere mit .
Schritt 3.2.5
Mutltipliziere mit .
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.2.3
Ersetze alle durch .
Schritt 3.3.3
Die Ableitung von nach ist .
Schritt 3.3.4
Mutltipliziere mit .
Schritt 3.4
Vereine die Terme
Schritt 3.4.1
Stelle die Faktoren von um.
Schritt 3.4.2
Addiere und .
Schritt 4
Schritt 4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4.3
Die Ableitung von nach ist .
Schritt 4.4
Potenziere mit .
Schritt 4.5
Potenziere mit .
Schritt 4.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.7
Addiere und .
Schritt 4.8
Die Ableitung von nach ist .
Schritt 4.9
Potenziere mit .
Schritt 4.10
Potenziere mit .
Schritt 4.11
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.12
Addiere und .
Schritt 4.13
Vereinfache.
Schritt 4.13.1
Wende das Distributivgesetz an.
Schritt 4.13.2
Mutltipliziere mit .
Schritt 5
Die vierte Ableitung von nach ist .