Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Schritt 3.1
Kombiniere und .
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Es sei . Ermittle .
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Kombiniere und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Potenziere mit .
Schritt 7.3
Potenziere mit .
Schritt 7.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.5
Addiere und .
Schritt 8
Das Integral von nach ist .
Schritt 9
Schritt 9.1
Schreibe als um.
Schritt 9.2
Kombiniere und .
Schritt 10
Ersetze alle durch .
Schritt 11
Schritt 11.1
Stelle die Faktoren in um.
Schritt 11.2
Stelle die Terme um.