Analysis Beispiele

Berechne unter Anwendung der Regel von de l’Hospital Grenzwert von (1-cos(x))/(sin(x)), wenn x gegen 0 geht
Schritt 1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.2.1.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.1
Der genau Wert von ist .
Schritt 1.2.3.1.2
Mutltipliziere mit .
Schritt 1.2.3.2
Subtrahiere von .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Der genau Wert von ist .
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Die Ableitung von nach ist .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.4.4
Mutltipliziere mit .
Schritt 3.5
Addiere und .
Schritt 3.6
Die Ableitung von nach ist .
Schritt 4
Wandle von nach um.
Schritt 5
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 6
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 7
Der genau Wert von ist .