Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.2.3
Ersetze alle durch .
Schritt 1.3
Differenziere.
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Vereinfache den Ausdruck.
Schritt 1.3.3.1
Mutltipliziere mit .
Schritt 1.3.3.2
Bringe auf die linke Seite von .
Schritt 1.3.3.3
Schreibe als um.
Schritt 1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Stelle die Terme um.
Schritt 1.4.2
Stelle die Faktoren in um.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.2.3.3
Ersetze alle durch .
Schritt 2.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.7
Mutltipliziere mit .
Schritt 2.2.8
Bringe auf die linke Seite von .
Schritt 2.2.9
Schreibe als um.
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.3.3
Ersetze alle durch .
Schritt 2.3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.7
Mutltipliziere mit .
Schritt 2.3.8
Bringe auf die linke Seite von .
Schritt 2.3.9
Schreibe als um.
Schritt 2.3.10
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Wende das Distributivgesetz an.
Schritt 2.4.3
Vereine die Terme
Schritt 2.4.3.1
Mutltipliziere mit .
Schritt 2.4.3.2
Mutltipliziere mit .
Schritt 2.4.3.3
Mutltipliziere mit .
Schritt 2.4.3.4
Mutltipliziere mit .
Schritt 2.4.3.5
Subtrahiere von .
Schritt 2.4.3.5.1
Bewege .
Schritt 2.4.3.5.2
Subtrahiere von .
Schritt 2.4.4
Stelle die Terme um.
Schritt 2.4.5
Stelle die Faktoren in um.
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.2.2.3
Ersetze alle durch .
Schritt 3.2.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.6
Mutltipliziere mit .
Schritt 3.2.7
Bringe auf die linke Seite von .
Schritt 3.2.8
Schreibe als um.
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.3.3.3
Ersetze alle durch .
Schritt 3.3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.7
Mutltipliziere mit .
Schritt 3.3.8
Bringe auf die linke Seite von .
Schritt 3.3.9
Schreibe als um.
Schritt 3.3.10
Mutltipliziere mit .
Schritt 3.4
Berechne .
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.4.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.4.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.4.2.3
Ersetze alle durch .
Schritt 3.4.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.5
Mutltipliziere mit .
Schritt 3.4.6
Bringe auf die linke Seite von .
Schritt 3.4.7
Schreibe als um.
Schritt 3.4.8
Mutltipliziere mit .
Schritt 3.5
Vereinfache.
Schritt 3.5.1
Wende das Distributivgesetz an.
Schritt 3.5.2
Vereine die Terme
Schritt 3.5.2.1
Mutltipliziere mit .
Schritt 3.5.2.2
Addiere und .
Schritt 3.5.2.2.1
Bewege .
Schritt 3.5.2.2.2
Addiere und .
Schritt 3.5.2.3
Subtrahiere von .
Schritt 3.5.3
Stelle die Terme um.
Schritt 3.5.4
Stelle die Faktoren in um.
Schritt 4
Schritt 4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.2
Berechne .
Schritt 4.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4.2.3.3
Ersetze alle durch .
Schritt 4.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.7
Mutltipliziere mit .
Schritt 4.2.8
Bringe auf die linke Seite von .
Schritt 4.2.9
Schreibe als um.
Schritt 4.3
Berechne .
Schritt 4.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.3.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4.3.3.3
Ersetze alle durch .
Schritt 4.3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.7
Mutltipliziere mit .
Schritt 4.3.8
Bringe auf die linke Seite von .
Schritt 4.3.9
Schreibe als um.
Schritt 4.3.10
Mutltipliziere mit .
Schritt 4.4
Berechne .
Schritt 4.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.4.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.4.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.4.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4.4.2.3
Ersetze alle durch .
Schritt 4.4.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.4.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.4.5
Mutltipliziere mit .
Schritt 4.4.6
Bringe auf die linke Seite von .
Schritt 4.4.7
Schreibe als um.
Schritt 4.4.8
Mutltipliziere mit .
Schritt 4.5
Vereinfache.
Schritt 4.5.1
Wende das Distributivgesetz an.
Schritt 4.5.2
Wende das Distributivgesetz an.
Schritt 4.5.3
Vereine die Terme
Schritt 4.5.3.1
Mutltipliziere mit .
Schritt 4.5.3.2
Mutltipliziere mit .
Schritt 4.5.3.3
Mutltipliziere mit .
Schritt 4.5.3.4
Mutltipliziere mit .
Schritt 4.5.3.5
Subtrahiere von .
Schritt 4.5.3.5.1
Bewege .
Schritt 4.5.3.5.2
Subtrahiere von .
Schritt 4.5.3.6
Addiere und .
Schritt 4.5.4
Stelle die Terme um.
Schritt 4.5.5
Stelle die Faktoren in um.