Analysis Beispiele

미분 구하기 - d/dx (tan(x)-1)/(sec(x))
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3
Die Ableitung von nach ist .
Schritt 4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.2
Addiere und .
Schritt 5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Potenziere mit .
Schritt 5.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.2
Addiere und .
Schritt 6
Die Ableitung von nach ist .
Schritt 7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Faktorisiere aus heraus.
Schritt 7.2
Faktorisiere aus heraus.
Schritt 7.3
Faktorisiere aus heraus.
Schritt 8
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Faktorisiere aus heraus.
Schritt 8.2
Kürze den gemeinsamen Faktor.
Schritt 8.3
Forme den Ausdruck um.
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Wende das Distributivgesetz an.
Schritt 9.2
Wende das Distributivgesetz an.
Schritt 9.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.3.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.3.1.1.1
Potenziere mit .
Schritt 9.3.1.1.2
Potenziere mit .
Schritt 9.3.1.1.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.3.1.1.4
Addiere und .
Schritt 9.3.1.2
Mutltipliziere mit .
Schritt 9.3.1.3
Mutltipliziere mit .
Schritt 9.3.2
Wende den trigonometrischen Pythagoras an.