Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Schritt 2.1
Differenziere.
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2.2
Die Ableitung von nach ist .
Schritt 2.2.2.3
Ersetze alle durch .
Schritt 2.2.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.4
Schreibe als um.
Schritt 2.2.5
Mutltipliziere mit .
Schritt 2.2.6
Mutltipliziere mit .
Schritt 2.3
Stelle die Terme um.
Schritt 3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Vereinfache die linke Seite.
Schritt 5.1.1
Stelle die Faktoren in um.
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.3.1
Teile jeden Ausdruck in durch .
Schritt 5.3.2
Vereinfache die linke Seite.
Schritt 5.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2
Forme den Ausdruck um.
Schritt 5.3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.2.2
Dividiere durch .
Schritt 5.3.3
Vereinfache die rechte Seite.
Schritt 5.3.3.1
Separiere Brüche.
Schritt 5.3.3.2
Wandle von nach um.
Schritt 5.3.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.3.3.4
Kombiniere und .
Schritt 6
Ersetze durch .