Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.2.1.3
Ersetze alle durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.3
Berechne .
Schritt 3.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.1.2
Die Ableitung von nach ist .
Schritt 3.3.1.3
Ersetze alle durch .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Kombiniere und .
Schritt 3.3.4
Kombiniere und .
Schritt 3.3.5
Kürze den gemeinsamen Teiler von und .
Schritt 3.3.5.1
Faktorisiere aus heraus.
Schritt 3.3.5.2
Kürze die gemeinsamen Faktoren.
Schritt 3.3.5.2.1
Faktorisiere aus heraus.
Schritt 3.3.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.5.2.3
Forme den Ausdruck um.
Schritt 3.4
Stelle die Terme um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Ersetze durch .