Analysis Beispiele

Finde die lokalen Maxima und Minima x+1/x
Schritt 1
Schreibe als Funktion.
Schritt 2
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Schreibe als um.
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4
Stelle die Terme um.
Schritt 3
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.2.2
Schreibe als um.
Schritt 3.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3.3
Ersetze alle durch .
Schritt 3.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.2.6
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.6.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.6.2
Mutltipliziere mit .
Schritt 3.2.7
Mutltipliziere mit .
Schritt 3.2.8
Potenziere mit .
Schritt 3.2.9
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.10
Subtrahiere von .
Schritt 3.2.11
Mutltipliziere mit .
Schritt 3.2.12
Mutltipliziere mit .
Schritt 3.2.13
Addiere und .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3.4.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Kombiniere und .
Schritt 3.4.2.2
Addiere und .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Schreibe als um.
Schritt 5.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.3
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 5.1.4
Stelle die Terme um.
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.3
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 6.3.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 6.4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Multipliziere jeden Term in mit .
Schritt 6.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 6.4.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 6.4.2.1.3
Forme den Ausdruck um.
Schritt 6.5
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Schreibe die Gleichung als um.
Schritt 6.5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.1
Teile jeden Ausdruck in durch .
Schritt 6.5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 6.5.2.2.2
Dividiere durch .
Schritt 6.5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.3.1
Dividiere durch .
Schritt 6.5.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6.5.4
Jede Wurzel von ist .
Schritt 6.5.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 6.5.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 6.5.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 7
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 7.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 7.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Schreibe als um.
Schritt 7.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 7.2.2.3
Plus oder Minus ist .
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 10.2
Dividiere durch .
Schritt 11
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 12
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Dividiere durch .
Schritt 12.2.2
Addiere und .
Schritt 12.2.3
Die endgültige Lösung ist .
Schritt 13
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 14
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Potenziere mit .
Schritt 14.2
Dividiere durch .
Schritt 15
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 16
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 16.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 16.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.2.1
Dividiere durch .
Schritt 16.2.2
Subtrahiere von .
Schritt 16.2.3
Die endgültige Lösung ist .
Schritt 17
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
ist ein lokales Maximum
Schritt 18