Analysis Beispiele

미분 구하기 - d/dx y=x^2e^(-1/x)
Schritt 1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3
Ersetze alle durch .
Schritt 3
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Mutltipliziere mit .
Schritt 4.3.2
Mutltipliziere mit .
Schritt 4.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Mutltipliziere mit .
Schritt 4.5.2
Addiere und .
Schritt 5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bewege .
Schritt 5.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.3
Addiere und .
Schritt 6
Vereinfache .
Schritt 7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Stelle die Terme um.
Schritt 8.2
Stelle die Faktoren in um.