Analysis Beispiele

미분 구하기 - d/dx y=7arctan(x+ Quadratwurzel von 1+x^2)
Schritt 1
Differenziere unter Anwendung der Faktorregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Benutze , um als neu zu schreiben.
Schritt 1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 2.3
Ersetze alle durch .
Schritt 3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kombiniere und .
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Ersetze alle durch .
Schritt 5
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6
Kombiniere und .
Schritt 7
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 8
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Mutltipliziere mit .
Schritt 8.2
Subtrahiere von .
Schritt 9
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 9.2
Kombiniere und .
Schritt 9.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 10
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 12
Addiere und .
Schritt 13
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 14
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Kombiniere und .
Schritt 14.2
Kombiniere und .
Schritt 14.3
Kürze den gemeinsamen Faktor.
Schritt 14.4
Forme den Ausdruck um.
Schritt 14.5
Stelle die Faktoren von um.